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An Appraisal of Methods for Computation of
the Dispersion Characteristics of
Open Microstrip

EDWARD F. KUESTER, MEMBER, IEEE, AND DAVID C. CHANG, SENIOR MEMBER, IEEE

Abstract—A number of methods in the literature for computing the
dispersion characteristics of open microstrip are compared in the case
when substrate thickness is comparable to strip width. Significant dis-
crepancies between the various results are found, and several suggestions
are made to explain them.

1. INTRODUCTION

METHOD has recently been derived by the present

authors [1] for the computation of the dispersion
relation of open microstrip with electrically narrow strip
width. In an effort to determine how wide a strip can be
accurately described by this theory, a numerically “exact”
solution was sought in the literature for purposes of com-
parison. Instead of finding such a standard, the authors
discovered a large number of procedures [2]-[10],
numerous computed results, but with comparisons be-
tween them rather sparse. In an attempt to evaluate these
methods, their results have been compared where identical
or similar microstrip parameters were used, and the results
presented in graphical form. Mutual discrepancies of up
to 25 percent in the effective permittivity (relative to the
difference between this effective permittivity and its value
at zero frequency) are noted. An attempt is made to
explain this comparison on the basis of the functions used
to represent the transverse current distribution in the
various methods.

II. COMPARISON OF EXISTING METHODS

The integral equations describing the fundamental
mode can be cast in a variety of forms; we follow the
approach taken in [1]. From there we have that, for an
assumed propagation factor of exp (iwt— ikyax), with «
an as yet unknown normalized propagation constant, and
x the distance along the strip axis (Fig. 1):

f_llGe(y —y)pi(¥)dy'= cosh Va?—1 kyy (1)

where p,(y) is the charge distribution on the strip (—/<y
<),
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Fig. 1. Geometry of open microstrip.
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T=kgyt is the substrate thickness normalized to the free-
space wavenumber, and

u,,=(}\2+a2—p,,e,)l/2 ug=(A2+a>—1)"/? Re (u)>0

3)
where ¢, and p, are, respectively, the relative permittivity
and permeability of the substrate. Once the solution of (1)
is known (as a function of «), the longitudinal current
density J, (y) is then found from

I .
S oy =000 =5 | cosh V=T ko
- 0

+ [ MO8 @

where
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M(y)=2(pe.~1)
fw cos kAydA )
* o
o (gup+u, tanh u, T)( p,uy+ u, coth u, T)u,

The solutions p,(y) and J, () thus obtained (which are
both dependent on «) are then inserted into

[ [kl () +p1(1)]dr =0 @)

(which follows from the requirement that the transverse
current density vanish at the edges of the strip) to obtain
the characteristic equation for obtaining a.

In [4], [61-[8], and {10], this system of equations (or one
equivalent to it) is solved by expanding the unknowns
p1(y) and J (») (or their counterparts) in terms of a sel of
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basis functions, thereby converting the integral equations
into an infinite set of algebraic equations for the
coefficients in these expansions.! This system is then
solved by truncation to a convenient number of un-
knowns. These methods, assuming no difficulties arise
with relative convergence [11], will in principle converge
to the correct value of a as a larger number of unknown
coefficients is retained in the truncation.

However, [1]-[3], [5], and [9], on the other hand, all
assume or derive some form of current and charge distrib-
utions to insert into (1)-(7) in order to obtain an ap-
proximate but closed form characteristic equation to solve
for a. In the case of [5], [9], a variational formulation was
used in an attempt to minimize the error due to this
approximation. All these methods can be thought of as a
very special case of the truncation method,”> wherein only
a single basis function and unknown coefficient is used
for each of p, and J,.

Since for sufficiently narrow strips or low frequencies
the transverse current J, will be small, it is reasonable to
use the same basis function I(y) for p, as for J,, especially
as both will have the same singularity at the edges of the
strip. If we then take

pi(Y)=a()I(y) T.(y)=bo(a)I(y) (8)

and substitute into (1), (4), and (7), and eliminate the cosh
term between (1) and (4), we obtain

o I(\) cos kA,
“’fo ptg+u, cothu, T

) f()x)u tanh u, T cos kg\y dA
— 2 n n aq —
- {2f0 € uy+u, tanh u, T Uy +2me=1)

f ® I(A) cos kAydA ©)
0 (euy+u, tanh u, T)( p,uy+ u, coth u, T)u,

where
0= [ 10) cos kway=2 [ 1(») cos ks (10)

is the Fourier transform of I(y), assumed here to be an
even function.

If we set y =0 in (9), and use the known charge distribu-
tion (/2—y?)~'/2 on a strip in free space for I(y) (so that
f()\)=Jo(k0}\l)) we obtain the formula of Denlinger [2]
and of Schmitt and Sarges [3]. Denlinger [2] also used the
charge distribution 1+]|y//|° as an approximation to
(*—=y»)~1/2 to simplify computation of J(A). If we set
y=21/3, we get a modified form of this result suggested
by Kowalski and Pregla [5].

'The Gaussian—-Chebyshev quadrature used in [4] to evaluate the
integrals is essentially equivalent to expanding p, and J, in terms of the
Chebyshev polynomials.

2The method of [5] does not strictly fit this pattern, but the present
authors have verified that the later formula [9] of the same two authors,
which does fit the pattern, gives identical results for reasonably wide
strips.
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If the substitutions (8) truly represented the zeroth-
order step of an expansion in a (presumably orthogonal)
set of basis functions, instead of the procedure leading to
(9), we would, after substituting (8) into (1), (4), and (7),
next multiply (1) and (4) by I(y) and integrate from —/ to
1. The effect of this would be to replace I(A) cos k\y by
[F(V)]2. This is then the result of Pregla and Kowalski [9],
who obtained this result through the use of a variational
functional of the current distribution. In particular, if
Ty =Jy(kAl), we get the formula of [9], and also the
formula of [4] if the Gaussian—Chebyshev quadrature is
limited to one term. The zeroth-order expression of Itoh
and Mittra [6] uses a constant basis function, whence it is
our [J(\)J? functional using f(A\)=sin (k\/)/(kAl). As for
the remaining methods, the basis functions used in [7], [8]
are not precisely specified; however, it appears from
graphs in these papers that they might be T, (y/I)(1*—
yH)~12, where T,, are the Chebyshev polynomials of the
first kind, making this technique closely related to that of
[4]. Farrar and Adams [10] use pulse functions as com-
monly found in moment-method applications; their
zeroth-order approximation would be the same as that of
Itoh and Mittra [6].

Finally, it should be mentioned that the approximation
of the present authors for narrow strips [1] can be ob-
tained from (9) by adding and subtracting the limiting
forms of the integrands (except for I(A) cos (k/\v)) for
large A, e.g.,

1 1
wug+u, cothu, T A(p,+ coth AT)

1 1
wug+u, cothu, T A(w,+ cothAT) |

(11)

The first term, together with the current distribution /(\)
=J(k\l), can be integrated in closed form, and gives a
term independent of frequency which, when approxi-
mated for /2«4¢%, reduces to the static inductance (or
capacitance) term of [1]. The second term from (11) falls
off rapidly with A, and if we put I(A) cos (k\v)=1 in
these terms, then (9) reduces to the result of [1], which is
considerably simpler than (9) and can be rapidly solved
by iterative or other techniques since the dominant a-
dependence is the factor a® in the right-hand side. It
should be emphasized, however, that this result is strictly
valid only in the narrow-strip limit.

A comparison of the numerical results for e,m=a2 of
[11-[10] is made in Figs. 2 and 3. Fig. 2 displays results® of
[11-]31, [6]-[10], all for identical configurations, except for
[3] which used a slightly smaller €. Fig. 3 compares a
different case from [3]-[5], again all identical except for
[5], which had a somewhat larger ratio of 2//¢. Even
though all results except those of [1] and [9] had to be

3See footnote 2. The formula of [9] was programmed by the present
authors and results presented here.
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Fig. 2. Comparison of effective dielectric constant ‘uu=0‘2 as com-

puted by various authors. Parameters are as shown in figure, unless
otherwise noted: (D Farrar and Adams [10]. @ Itoh and Mittra [6].
® Van de Capelle and Luypaert [7], [8]. @ Denlinger [2]. ® Schmitt
and Sarges [3] (¢, =11.2). @ Chang and Kuester [1]. D Pregla and
Kowalski [9].
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Fig. 3. Comparison of effective dielectric constant c,w=a2 as com-

puted by various authors. Parameters are as shown in figure,unless
otherwise noted: (D Schmitt and Sarges [3]. @ Fujiki ef al. [4]. O
Kowalski and Pregla [5] (2//¢=1.0).

Experimental results: ¢ Hartwig et al. [13). +Deutsch and Jung
[14] (¢,=9.8, 2{/t=1.0).

read from graphs with an attendant and unavoidable
error, there is such a spread, especially in Fig. 2, as could
not be attributed to this error alone. Also included in Fig.
3 are results of measurements by Hartwig et a/. [13] and
by Deutsch and Jung [14]. The latter seem to have a
significant constant discrepancy with all the theories,
while the former are in rather close agreement, although
none of the individual theories seems to be especially
favored.

III.

Good agreement among the results of [7]-[9] is seen in
Fig. 2, and between [4] and [5] in Fig. 3. The other
solutions have deviations from these and each other; in
Fig. 2 these are as large as 25 percent of the total disper-
sion of ¢, (thatis, ¢, —¢, | _ ,) at f=8 GHz. While it is
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beyond the scope of this short note to program the
methods of [1]-[10] and perform exhaustive comparisons
among them to determine a “best” technique for the
problem, several possible reasons for the discrepancies
can be offered.

First, it can be noted that the basis functions of [6] and
[10] do not have the appropriate edge singularity for p,(y)
or J () aty ==/ As a consequence, a very large number
of terms in these expansions might be necessary in order
to minimize the error which results. Second, the formulas
of [2] and [3], while the edge singularity has been in-
cluded, have chosen arbitrarily to satisfy (9) at y =0. We
have verified that the (again, arbitrary) choice of y =21/3
suggested in [5] can result in a change in ¢ of 10-15
percent at f=8 GHz for the typical cases considered here,
i.e., when the strip is not narrow compared with the
substrate. This potential source of error is avoided in the
other methods by the multiplication of (9) by I(y) and
integration from —/ to /. As pointed out in [9], this also
has the advantage that a single basis function approxima-
tion is additionally a variational expression, and thus
potentially more accurate. Finally, the accuracy with
which the integrals in (9) are evaluated numerically is a
possible source of error. This seems a possible explanation
for the discrepancy between the results of [2] and [3] given
in Fig. 2, which seems larger than can be attributed solely
to the different values of ,.

The paper of Jansen [12] appeared after this compari-
son had been completed. Jansen notes the necessity for
the basis functions to satisfy the edge condition, and also
notes that basis functions, such as those used in [6] and
[10] which are not continuously differentiable, can also
lead to extraneous, nonphysical solutions. The basis func-
tions used in [12] are similar to those used in [4] (although
the author did not refer to this paper or make explicit
comparisons with any other results). The results presented
in [12] for narrow strips do not extend to substrates which
are very large electrically, but for +=0.64 mm, 2//t==
0.9375, €,=9.9, and f=16 GHz, a result of ¢, =7.25 is
obtained. This result would remain the same if f and ¢
were scaled to 8.06 GHz and ¢=1.27 mm, respectively,
21/t remaining constant. The closest comparable result in
[4] is for t=1.27 mm, 2//¢=0.96, and €,=9.7, which is
¢, =7.115 (this is the result plotted in Fig. 3). If this result
can be scaled up for ¢, =9.9 by simply multiplying by the
ratio (9.9/9.7), the agreement can be seen to be excellent.

In summary then, we would speculate that the tech-
niques of [4], [5], [7]-[9), and [12] are the most accurate of
those considered here, for the case when the strip width is
comparable to the substrate thickness. The methods of [6]
and [10] can in principle also be made accurate in this
range, but because the basis functions do not as precisely
represent the actual behavior of the current and charge, a
larger number of approximating functions is probably
needed than is reported therein. The theories of [1]-[3], on
the other hand, are fundamentally narrow-strip approxi-
mations, and can only give qualitatively correct results in
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the dispersive regime. It would appear that a more de-
tailed examination of these theories is needed before any
of their results can be used as a standard for comparison
when 2//t~1.
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Accurate Solution of Microstrip and Coplanar
Structures for Dispersion and for
Dielectric and Conductor Losses

D. MIRSHEKAR-SYAHKAL anp J. BRIAN DAVIES, MEMBER, IEEE

Abstract—For the analysis of coplanar- and microstrip-type structures,
a higher order solution of the spectral-domain approach is introduced.
Legendre polynomials are used as the basis functions for fields having
singularitics near the edges, leading to fast convergence to the exact
solution. A perturbation technique is combined with the spectral-domain
method to evaluate conductor and dielectric losses in microstrip, inverted
microstrip, and coupled microstrip in the metallic enclosure. Computations
of characteristic impedance and losses incurred in several structures are
also presented. Central processing unit (CPU) time on an IBM 360 /65 for
the zeroth-order approximation ranges from 1 to about 5 s for the whole
computation, and increases if higher order of solution is requested for
better accuracy. The calculation of attenuation due to conductor losses is
found to be particularly sensitive to order of approximation, so that the
generally used “zeroth-order” solution is inadequate. A user-oriented
program package has been written, including options on order of mode,
order of solution (i.e., of approximation), impedance, attenuation, and
number of substrates. Although written for single or coupled microstrip,
the program can be adapted for arbitrary arrangements of thin coplanar
conductors. The program is described separately.
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I. INTRODUCTION

HE WIDESPREAD use of MIC’s in recent years

has caused rapid progress in the theory and technol-
ogy of it. The very first transmission line used in MIC
was, indeed, microstrip laid on the dielectric substrate,
and then other transmission lines such as slot line, sus-
pended microstrip, and so on, were introduced and im-
proved.

Initially, the analysis for this class of transmission line
was invariably a quasi-TEM approximation, except for
slot line where Cohn [1] introduced a frequency depen-
dent solution because of its different nature. Although a
quasi-TEM solution at low frequency can yield satisfac-
tory ‘results, at high frequency its weakness becomes ap-
parent. To feature the frequency dependence of these
lines, one must consider a hybrid mode analysis which in
turn is more tedious, and in some cases requires enormous
computing time. This dispersion analysis was studied by
various workers and by various methods. For instance,
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