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An Appraisal of Methods for Computation of
the Dispersion Characteristics of

Open Microstrip

EDWARD F. KUESTER, MEMBER, IEEE, AND DAVID C. CHANG, SENIORMEMBER, lEEE

Abstnrct-A number of methods in the literature for computing tbe

dispersion ehameterfstics of open microstrip are compared fn the case

when substrate thickness is comparable to strip width. S@Wmnt rfis-

crepsncks between the vsrious results are form~ and seversf suggc40m

are msde to explain them.

I. INTRODUCTION

A METHOD has recently been derived by the present

authors [1] for the computation of the dispersion

relation of open microstrip with electrically narrow strip

width. In an effort to determine how wide a strip can be

accurately described by this theory, a numerically “exact”

solution was sought in the literature for purposes of com-

parison. Instead of finding such a standard, the authors

discovered a large number of procedures [2]-[10],

numerous computed results, but with comparisons be-

tween them rather sparse. In an attempt to evaluate these

methods, their results have been compared where identical

or similar rnicrostrip parameters were used, and the results

presented in graphical form. Mutual discrepancies of up

to 25 percent in the effective permittivity (relative to the

difference between this effective permittivity and its value

at zero frequency) are noted. An attempt is made to

explain this comparison on the basis of the functions used

to represent the transverse current distribution in the

various methods.

II. COMPARISON OF EXISTING METHODS

The integral equations describing the fundamental

mode can be cast in a variety of forms; we follow the

approach taken in [1]. From there we have that, for an

assumed propagation factor of exp (kot – ikoax), with a

an as yet unknown normalized propagation constant, and

x the distance along the strip axis (Fig. 1):

~’ G.(Y-Y’)PI(Y’)@’= cosh ~ I%Y (1)
–1

where pi(y) is the charge distribution on the strip ( — 1<y

< 1),
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Fig. 1. Geometry of open microstrip.

~ (un tanh z.q2’) cos ko~y dA
G~(Y)=2~ ,,uo+ ~n tanh unT ~” (2)

T= kot is the substrate thickness normalized to the free-

space wavenumber, and

Un= (X2+Cl*–JL,+2 uo=(A2+a2– 1)1’2 Re (UO)>O

I(3)

where c, and p, are, respectively, the relative permittivity

and permeability of the substrate. Once the solution of (1)

is known (as a function of a), the longitudinal cut-rent

density J.(Y) is then found from

where

(5)Gin(Y) ‘2Pr4m~ru~u:~hAunT

MY)=2(V,%- 1)

“J

co COS kJydA
I(6)

o (E,Uo+ Un tanh u. T)( p,uo+ Un coth UnT)uo “

The solutions p,(y) and .lX(y) thus obtained (which are

both dependent on a) are then inserted into

J:,[’~o~Jx(Y)+P1(Y) ]@=o (7)

(which follows from the requirement that the transverse

current density vanish at the edges of the strip) to obtain

the characteristic equation for obtaining a.
In [4], [6]–[8], and [10], this system of equations (or one

equivalent to it) is solved by expanding the unknowns

PI(Y) and J.(Y) (or their counterparts) in terms of a sef of
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basis functions, thereby converting the integral equations

into an infinite set of algebraic equations for the

coefficients in these expansions. * This system is then

solved by truncation to a convenient number of un-

knowns. These methods, assuming no difficulties arise

with relative convergence [11 ], will in principle converge

to the correct value of a as a larger number of unknown

coefficients is retained in the truncation.

However, [1]-[3], [5], and [9], on the other hand, all

assume or derive some form of current and charge distrib-

utions to insert into ( l)–(7) in order to obtain an ap-

proximate but closed form characteristic equation to solve

for a. In the case of [5], [9], a variational formulation was

used in an attempt to minimize the error due to this

approximation. All these methods can be thought of as a

very special case of the truncation method,z wherein only

a single basis function and unknown coefficient is used

for each of PI and JX.

Since for sufficiently narrow strips or low frequencies

the transverse current JY will be small, it is reasonable to

use the same basis function Z(y) for p, as for JX, especially

as both will have the same singularity at the edges of the

strip. If we then take

PI(Y) = ~o(~)@) J.(Y) = ~o(~)~(Y) (8)

and substitute into (1), (4), and (7), and eliminate the cosh

term between (1) and (4), we obtain

co @) COSk~

z~’i pruo+ Un coth unTdA

{Ja2 2
w i(A) Un tanh Un T cos k~y dA

. ~ ‘2(14%-1,
o C,uo+ Un tanh u. T

J
m i(~) COSk)ydA

1
(9)

“ o (c,uo+ Un tanh UnT)( p,uo+ Un coth u. T)uo

where

~(~) = jj(y) COSk#y@ = 2~z1(y) COS k~y~ (10)

is the Fourier transform of Z(y), assumed here to be an

even function.

If we set y = O in (9), and use the known charge distribu-

tion (12 – y2)- 1/2 on a strip in free space for 1(Y) (so that

@)= Jo(k@)) we obtain the formula of Denlinger [2]

and of Schmitt and Sarges [3]. Denlinger [2] also used the
charge distribution 1+ Iy/ 113 as an approximation to

(Z2 – y2)- ‘/2 to simplify computation of ~(~). If we set

y =21/3, we get a modified form of this result suggested

by Kowalski and Pregla [5].

1The Gaussian-Chebyshev quadrature used in [4] to evaluate the
inte~als is essentially equivalent to expanding PI and Jx in terms of the
Chebyshev polynomials.

‘The method of [5] does not strictly fit this pattern, but the present
authors have verified that the later formula [9] of the same two authors,
which does fit the pattern, gives identical resufts for reasonably wide

strips.

If the substitutions (8) truly represented the zeroth-

order step of an expansion in a (presumably orthogonal)

set of basis functions, instead of the procedure leading to

(9), we would, after substituting (8) into (l), (4), and (7),

next multiply (1) and (4) by 1(y) and integrate from – 1 to

l.-The effect of this would be to replace ~(~) cos kJy by

[1(A)]2. This is then the result of Pregla and Kowalski [9],

who obtained this result through the use of a variational

tJtnctional of the current distribution. In particular, if

l(~) = Jo(k~l), we get the formula of [9], and also the

formula of [4] if the Gaussian–Chebyshev quadrature is

limited to one term. The zeroth-order expression of Itoh

and Mittra [6] uses a constant basis function, whence it is

our [@)]2 functional using ~(~)= sin (k~l)/(k@). As for

the remaining methods, the basis functions used in [7], [8]

are not precisely specified; however, it appears from

graphs in these papers that they might be T~(y/1)(12 –

y2) - 1/2, where T are the Chebyshev polynomials of the

first kind, making this technique closely related to that of

[4]. Farrar and Adams [10] use pulse functions as com-

monly found in moment-method applications; their

zeroth-order approximation would be the same as that of

Itoh and Mittra [6].

Finally, it should be mentioned that the approximation

of the present authors for narrow strips [1] can be ob-

tained from (9) by adding and subtracting the limiting

forms of the integrands (except for ~(~) cos (k~y)) for

large A, e.g.,

1 1

14uo + % coth % T = A( v, + Coth AT)

[

1 1
+

/.LrUo + Un coth Un T – A( p, + coth AT) 1. (11)

The first term, together with the current distribution ~(~)

= Jo(k~l), can be integrated in closed form, and gives a

term independent of frequency which, when approxi-

mated for 12<<4t2, reduces to the static inductance (or

capacitance) term of [1]. The secon~ term from (11) falls

off rapidly with A, and if we put 1(A) cos (k~y) = 1 in

these terms, then (9) reduces to the result of [1], which is

considerably simpler than (9) and can be rapidly solved

by iterative or other techniques since the dominant a-

dependence is the factor a2 in the right-hand side. It

should be emphasized, however, that this result is strictly
valid only in the narrow-strip limit.

A comparison of the numerical results for ●re,f = a2 of

[1]-[10] is made in Figs. 2 and 3. Fig. 2 displays results3 of

[1]-[3], [6]-[10], all for identical configurations, except for

[3] which used a slightly smaller q. Fig. 3 compares a

different case from [3]–[5], again all identical except for
[5], which had a somewhat larger ratio of 21/t. Even

though all results except those of [1] and [9] had to be

3Seefootnote 2. The formula of [9] was programmed by the present
authors and resuftspresentedhere.



KUESTER AND CHANG: DISPERSION CHARACTERISTICS OF OPEN MICROSTRIP fj93

●reff

II

10

9

96
m

0

&_._+_-
f, GHz

Fig. 2. Comparison of effective dielectric constant Crcf,= az as com-
puted by various authors. Parameters are as shown in figure, unless
otherwise noted: @ Farrar and Adams [10]. Q) Itoh and Mittra [6].
@ Van de Capelle and Luypaert [7], [8]. @ Derdinger [2]. @ Schmitt
and Sarges [3] (~= 11.2). @ Chang and Kuester [1]. o Pregla and
Kowalski [9].
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Fig. 3. Comparison of effective dielectric constant ~,,f, = a2 as com-

puted by various authors. Parameters are as shown m figure, unless
otherwise noted: @ Schmitt and Sarges [3]. @ Fujiki et al. [41. @
Kowalski and Pregla [5] (21/t= 1.0).

Experimental results: ● Hartwig ei al. [13]. + Deutsch and Jung
[14] (c, =9.8, 21/t= 1.0).

read from graphs with an attendant and unavoidable

error, there is such a spread, especially in Fig. 2, as could

not be attributed to this error alone. Also included in Fig.

3 are results of measurements by Hartwig et al. [13] and

by Deutsch and Jung [14]. The latter seem to have a

significant constant discrepancy with all the theories,

while the former are in rather close agreement, although

none of the individual theories seems to be especially

favored.

III. DISCUSSION

Good agreement among the results of [7]–[9] is seen in

Fig. 2, and between [4] and [5] in Fig. 3. The other

solutions have deviations from these and each other; in

Fig. 2 these are as large as 25 percent of the total disper-

sion of c,,, (that is, e.e,,- ~,c~fIf = ~) at f = 8 GHz. while it ise

beyond the scope of this short note to program the

methods of [1 ]–[ 10] and perform exhaustive comparisons

among them to determine a “best” technique for the

problem, several possible reasons for the discrepancies

can be offered.
First, it can be noted that the basis functions of [6] and

[10] do not have the appropriate edge singularity for p,(y)

or .lX(y) at y = * 1. As a consequence, a very large number

of terms in these expansions might be necessary in order

to minimize the error which results. Second, the formulas

of [2] and [3], while the edge singularity has been in-

cluded, have chosen arbitrarily to satisfy (9) at y = O. We

have verified that the (again, arbitrary) choice of y = 21/3

suggested in [5] can result in a change in 6,:,, of 10– 15

percent at j= 8 GHz for the typical cases considered here,

i.e., when the strip is not narrow compared with the

substrate. This potential source of error is avoided in the

other methods by the multiplication of (9) by 1(Y) and

integration from —1 to 1. As pointed out in [9], this also

has the advantage that a single basis function approxima-

tion is additionally a variational expression, and thus

potentially more accurate. Finally, the accuracy with

which the integrals in (9) are evaluated numerically is a

possible source of error. This seems a possible explanation

for the discrepancy between the results of [2] and [3] given

in Fig. 2, which seems larger than can be attributed solely

to the different values of e,.
The paper of Jansen [12] appeared after this compari-

son had been completed. Jansen notes the necessity for

the basis functions to satisfy the edge condition, and also

notes that basis functions, such as those used in [6] and

[10] which are not continuously differentiable, can also

lead to extraneous, nonphysical solutions. The basis func-

tions used in [12] are similar to those used in [4] (although

the author did not refer to this paper or make explicit

comparisons with any other results). The results presented

in [12] for narrow strips do not extend to substrates which

are very large electrically, but for t =0.64 mm, 21/t==

0.9375, c,= 9.9, and f= 16 GHz, a result of c,,, = 7.25 is

obtained. This result would remain the same if f and t

were scaled to 8.06 GHz and t= 1.27 mm, respectivel:j,

21/ t remaining constant. The closest comparable result in

[4] is for t= 1.27 mm, 21/t= 0.96, and ~,= 9.7, which is

c ~ =7.115 (this is the result plotted in Fig. 3). If this result

c& be scaled up for c,= 9.9 by simply multiplying by the

ratio (9.9/9.7), the agreement can be seen to be excellent.

In summary then, we would speculate that the tech-

niques of [4], [5], [7]–[9], and [12] are the most accurate of

those considered here, for the case when the strip width is
comparable to the substrate thickness. The methods of [6]

and [10] can in principle also be made accurate in this

range, but because the basis functions do not as precisely

represent the actual behavior of the current and charge, a

larger number of approximating functions is probablly

needed than is reported therein. The theories of [1 ]–[3], cm

the other hand, are fundamentally narrow-strip approxi-

mations, and can only give qualitatively correct results in
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the dispersive regime. It would appear that a more de-

tailed examination of these theories is needed before any

of their results can be used as a standard for comparison

when 21/t?l.
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Microstrip and Coplanar
Dispersion and for
Conductor Losses

D. MIRSHEKAR-SYAHKAL AND J. BRIAN DAVIES, MEMBER, IEEE

Abstract-For the anafysis of coplanar- and microstrip-type stroetur~

a higher order solution of the speetraf-domain approach is introduced.

Legendre polynomials are used as the basis functions for fields having

singularities near the edgea, leading to fast convergence to the exact

solution. A perturbation tecfndque is combined with the spectral-domain

method to evaluate condnctor sod dielectric losses in rnicrostrip, inverted

rnicrostrip, and coupled mfcrostrip in the metaUlc enclosure. Computations

of characteristic impedance and losses incurred in severst structures ars

also presented. Ceutraf processing unit (CPU) time on an IBM 360/65 for

the zeroth-order approximation ranges from 1 to about 5 s for the whole

computation, and increases if higher order of solution is requested for

better aeeuracy. The calculation of attenuation dne to corrrhretor losses is

found to be particularly sensitive to order of approximation, so that the

generalfy used “zerotb-order” solution is inadequate. A user-oriented

program package has been written, including options on order of mmfq

order of solution (i.e., of approximation), impedance, attenuation+ and

numfxw of substrates. Afthough written for single or eonpled micrdrip,

tie program can be adapted for arWrary arrangements of thin coplanar

conductors. The program is deaeribed separately.

Manuscript received August 14, 1978; revised March 28, 1979.
The authors are with the Department of Electronic and Electrical

Engineering, University College, Torrington Place, London, England.

I. INTRODUCTION

T HE WIDESPREAD use of MIC’S in recent years

has caused rapid progress in the theory and technol-

ogy of it. The very first transmission line used in MIC

was, indeed, microstrip laid on the dielectric substrate,

and then other transmission lines such as slot line, sus-

pended microstrip, and so on, were introduced and im-

proved.

Initially, the analysis for this class of transmission line
was invariably a quasi-TEM approximation, except for

slot line where Cohn [1] introduced a frequency depen-

dent solution because of its different nature. Although a

quasi-TEM solution at low frequency can yield satisfac-

tory ‘results, at high frequency its weakness becomes ap-

parent. To feature the frequency dependence of these

lines, one must consider a hybrid mode analysis which in

turn is more tedious, and in some cases requires enormous

computing time. This dispersion analysis was studied by

various workers and by various methods. For instance,
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